Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Spectrochimica Acta ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2019
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2019
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Facilitated delignification in CAD deficient transgenic poplar studied by confocal Raman spectroscopy imaging

Authors: Segmehl, Jana S.; Keplinger, Tobias; Krasnobaev, Artem; Berg, John K.; Willa, Christoph; Burgert, Ingo;

Facilitated delignification in CAD deficient transgenic poplar studied by confocal Raman spectroscopy imaging

Abstract

Lignocellulosic biomass represents the only renewable carbon resource which is available in sufficient amounts to be considered as an alternative for our fossil-based carbon economy. However, an efficient biochemical conversion of lignocellulosic feedstocks is hindered by the natural recalcitrance of the biomass as a result of a dense network of cellulose, hemicelluloses, and lignin. These polymeric interconnections make a pretreatment of the biomass necessary in order to enhance the susceptibility of the polysaccharides. Here, we report on a detailed analysis of the favourable influence of genetic engineering for two common delignification protocols for lignocellulosic biomass, namely acidic bleaching and soda pulping, on the example of CAD deficient poplar. The altered lignin structure of the transgenic poplar results in a significantly accelerated and more complete lignin removal at lower temperatures and shorter reaction times compared to wildtype poplar. To monitor the induced chemical and structural alterations at the tissue level, confocal Raman spectroscopy imaging, FT-IR spectroscopy, and X-ray diffraction were used.

Country
Netherlands
Keywords

Plants, Genetically Modified, Spectrum Analysis, Raman, Lignocellulosic biomass, Lignin, Facilitated delignification, X-ray diffraction, CAD deficient poplar, Cellulose conformational change, Raman spectroscopy imaging, Alcohol Oxidoreductases, Populus, Biomass, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Energy Research