Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientia Horticulturae
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Scientia Horticulturae
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Elevated CO2 concentrations alleviate the inhibitory effect of drought on physiology and growth of cassava plants

Authors: Cruz, J.L.; Alves, A.A.C.; LeCain, D.R.; Ellis, David; Morgan, J.A.;

Elevated CO2 concentrations alleviate the inhibitory effect of drought on physiology and growth of cassava plants

Abstract

Abstract Due to the rise in anthropogenic greenhouse gas concentrations, the earth's climate is expected to change, with precipitation being reduced in some areas resulting in growth-limiting drought and, as a consequence, reduced plant productivity. We investigated the physiological and growth responses of cassava (Manihot esculenta Crantz) to approximate present-day ambient (390 μL L−1) and elevated (750 μL L−1) atmospheric CO2 concentrations under well-watered and water deficit conditions, aiming at understanding how cassava would face those problems. Water deficits led to reductions in the Leaf Elongation Rate of plants grown at ambient as well as CO2-enriched concentrations. However, plants grown at 750 μL L−1 of CO2 maintained leaf growth two days longer than plants grown at 390 μL L−1. Three Days After Withholding Water (DAWW), photosynthesis and stomatal conductance were reduced in plants grown under ambient CO2, while in plants under an elevated CO2 concentration, these physiological functions remained similar to that of control plants grown under good water availability. Five DAWW plants grown with 750 μL L−1 continued to have enhanced gas exchange compared with plants grown under 390 μL L−1. Under drought stress, the instantaneous transpiration efficiency was always greatest for plants grown under elevated CO2. The positive response of elevated CO2 levels on total dry mass was 61% in the water-stressed plants and only 20% for the plants grown under good water availability. Stomatal limitation was an important factor reducing CO2 assimilation in cassava growing under drought conditions.

Country
France
Keywords

water use efficiency, biomass, gas exchange, transpiration, water loss

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green
hybrid