Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-UPMC
Article . 2013
Data sources: HAL-UPMC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2013
Data sources: HAL INRAE
The Science of The Total Environment
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microbial utilisation of biochar-derived carbon

Authors: Todd Maddern; Evelyn S. Krull; Bhupinder Pal Singh; Lynne M. Macdonald; Phillip A. Hall; Thomas Kuhn; Thomas Kuhn; +5 Authors

Microbial utilisation of biochar-derived carbon

Abstract

Whilst largely considered an inert material, biochar has been documented to contain a small yet significant fraction of microbially available labile organic carbon (C). Biochar addition to soil has also been reported to alter soil microbial community structure, and to both stimulate and retard the decomposition of native soil organic matter (SOM). We conducted a short-term incubation experiment using two (13)C-labelled biochars produced from wheat or eucalypt shoots, which were incorporated in an aridic arenosol to examine the fate of the labile fraction of biochar-C through the microbial community. This was achieved using compound specific isotopic analysis (CSIA) of phospholipid fatty acids (PLFAs). A proportion of the biologically-available fraction of both biochars was rapidly (within three days) utilised by gram positive bacteria. There was a sharp peak in CO2 evolution shortly after biochar addition, resulting from rapid turnover of labile C components in biochars and through positive priming of native SOM. Our results demonstrate that this CO2 evolution was at least partially microbially mediated, and that biochar application to soil can cause significant and rapid changes in the soil microbial community; likely due to addition of labile C and increases in soil pH.

Countries
Australia, Australia, France
Keywords

Carbon sequestration, [SDE] Environmental Sciences, Magnetic Resonance Spectroscopy, 550, [SDV]Life Sciences [q-bio], black carbon, 630, Mass Spectrometry, c 13 plfa, Soil Pollutants, mineralization, Phospholipids, Soil Microbiology, char, Carbon Isotopes, Fatty Acids, [SDV] Life Sciences [q-bio], Charcoal, [SDE]Environmental Sciences, community structure, Pyrolysis, Carbon Sequestration, Chromatography, Gas, short term, growth, Char, Black carbon, soil organic matter, Organic carbon, decomposition, wheat straw, biomass, organic carbon, Western Australia, Carbon Dioxide, 540, pyrolysis, forest soil, carbon sequestration, Carbon, ¹³C-PLFA

Powered by OpenAIRE graph
Found an issue? Give us feedback