Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Understanding multiple stressors in a Mediterranean basin: Combined effects of land use, water scarcity and nutrient enrichment

Authors: Pedro Segurado; Carina Almeida; Ramiro Neves; Maria Teresa Ferreira; Paulo Branco;

Understanding multiple stressors in a Mediterranean basin: Combined effects of land use, water scarcity and nutrient enrichment

Abstract

River basins are extremely complex hierarchical and directional systems that are affected by a multitude of interacting stressors. This complexity hampers effective management and conservation planning to be effectively implemented, especially under climate change. The objective of this work is to provide a wide scale approach to basin management by interpreting the effect of isolated and interacting factors in several biotic elements (fish, macroinvertebrates, phytobenthos and macrophytes). For that, a case study in the Sorraia basin (Central Portugal), a Mediterranean system mainly facing water scarcity and diffuse pollution problems, was chosen. To develop the proposed framework, a combination of process-based modelling to simulate hydrological and nutrient enrichment stressors and empirical modelling to relate these stressors - along with land use and natural background - with biotic indicators, was applied. Biotic indicators based on ecological quality ratios from WFD biomonitoring data were used as response variables. Temperature, river slope, % of agriculture in the upstream catchment and total N were the variables more frequently ranked as the most relevant. Both the two significant interactions found between single hydrological and nutrient enrichment stressors indicated antagonistic effects. This study demonstrates the potentialities of coupling process-based modelling with empirical modelling within a single framework, allowing relationships among different ecosystem states to be hierarchized, interpreted and predicted at multiple spatial and temporal scales. It also demonstrates how isolated and interacting stressors can have a different impact on biotic quality. When performing conservation or management plans, the stressor hierarchy should be considered as a way of prioritizing actions in a cost-effective perspective.

Keywords

Aquatic Organisms, Conservation of Natural Resources, Mediterranean Region, Climate Change, Water Pollution, Agriculture, Rivers, Water Supply, Animals, Hydrology, Ecosystem, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 1%
Top 10%
Top 1%