Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests

Authors: Katharina Mausolf; Paul Wilm; Werner Härdtle; Kirstin Jansen; Bernhard Schuldt; Knut Sturm; Goddert von Oheimb; +3 Authors

Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests

Abstract

Climate extremes are predicted to become more frequent and intense in future. Thus, understanding how trees respond to adverse climatic conditions is crucial for evaluating possible future changes in forest ecosystem functioning. Although much information about climate effects on the growth of temperate trees has been collected in recent decades, our understanding of the influence of forest management legacies on climate-growth relationships is still limited. We used individual tree-ring chronologies from managed and unmanaged European beech forests, located in the same growth district (i.e. with almost identical climatic and soil conditions), to examine how forest management legacies (recently managed with selection cutting, >20 years unmanaged, >50 years unmanaged) influence the radial growth of Fagus sylvatica during fluctuating climatic conditions. On average, trees in managed stands had higher radial growth rate than trees in unmanaged stands during the last two decades a 50%. However, the beech trees in the unmanaged stands were less sensitive to drought than those in the managed stands. This effect was most pronounced in the forest with longest management abandonment (>50 years), indicating that the drought sensitivity of mature beech trees is in these forests the lower, the longer the period since forest management cessation is. Management-mediated modifications in crown size and thus water demand are one likely cause of the observed higher climate sensitivity of beech in the managed stands. Our results indicate a possible trade-off between radial growth rate and drought tolerance of beech. This suggests that reducing stem density for maximizing the radial growth of target trees, as is common practice in managed forests, can increase the trees' drought sensitivity. In the prospect of climate change, more information on the impact of forest management practices on the climate-growth relationships of trees is urgently needed.

Country
Germany
Keywords

forest thinning, /dk/atira/pure/subjectarea/asjc/2300/2305; name=Environmental Engineering, canopy release, Climate Change, Forests, Trees, /dk/atira/pure/subjectarea/asjc/2300/2310; name=Pollution, Fagus, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action, drought sensitivity, Canopy release, management legacy, /dk/atira/pure/core/keywords/biology; name=Ecosystems Research, /dk/atira/pure/subjectarea/asjc/2300/2304; name=Environmental Chemistry, Droughts, radial growth, climate change, Radial growth, Drought sensitivity, Management legacy, /dk/atira/pure/subjectarea/asjc/2300/2311; name=Waste Management and Disposal, Forest thinning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 10%
Green