
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems

Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems
Water saving techniques, such as alternate wetting and drying (AWD), are becoming a necessity in modern rice farming because of climate change mitigation and growing water use scarcity. Reducing water can vastly reduce methane (CH4) emissions; however, this net climate benefit may be offset by enhanced carbon dioxide (CO2) emissions from soil. The main aims of this study were: to determine the effects of AWD on yield and ecosystem C dynamics, and to establish the underlying mechanistic basis for observed trends in net ecosystem C gain or loss in an Italian rice paddy. We investigated the effects of conventional water management (i.e. conventionally flooded paddy; CF) and AWD on biomass accumulation (aboveground, belowground, grain), key ecosystem C fluxes (net ecosystem exchange (NEE), net primary productivity (NPP), gross primary productivity (GPP), ecosystem respiration (ER), autotrophic respiration (RA), heterotrophic respiration (RH)), and soil organic matter (SOM) decay for four common commercial European rice cultivars. The most significant finding was that neither treatment nor cultivar affected NEE, GPP, ER or SOM decomposition. RA was the dominant contributor to ER for both CF and AWD treatments. Cultivar and treatment affected the total biomass of the rice plants; specifically, with greater root production in CF compared to AWD. Importantly, there was no effect of treatment on the overall yield for any cultivar. Possibly, the wetting-drying cycles may have been insufficient to allow substantial soil C metabolism or there was a lack of labile substrate in the soil. These results imply that AWD systems may not be at risk of enhancing soil C loss, making it a viable solution for climate change mitigation and water conservation. Although more studies are needed, the initial outlook for AWD in Europe is positive; with no net loss of soil C from SOM decomposition, whilst also maintaining yield.
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement France
- Newcastle University United Kingdom
- University of Eastern Piedmont Amadeo Avogadro Italy
- UNIVERSITY OF ABERDEEN United Kingdom
- University of Turin Italy
550, QH301 Biology, F08 - Systèmes et modes de culture, adaptation aux changements climatiques, Gross primary productivity, 630, DIOXIDE EXCHANGE, DRYING IRRIGATION, SDG 13 - Climate Action, Biomass, F06 - Irrigation, GREENHOUSE-GAS EMISSIONS, Agriculture, Europe, Alternate wetting and drying, réduction des émissions, Besoin en eau, Net ecosystem exchange, Ressource en eau, P33 - Chimie et physique du sol, Above and below ground biomass, P40 - Météorologie et climatologie, Stress dû à la sécheresse, SEASONAL-VARIATION, GRAIN, Article, QH301, REDUCES METHANE EMISSION, P10 - Ressources en eau et leur gestion, Ecosystem, Decomposition, European rice cultivation, Conservation of Water Resources, Oryza, PADDY FIELD, Cycle hydrologique, SOIL, CO2 EMISSIONS, Biotechnology and Biological Sciences Research Council (BBSRC), ECOSYSTEM, BB/M018415/1, Cycle du carbone, agrovoc: agrovoc:c_5435, agrovoc: agrovoc:c_3081, agrovoc: agrovoc:c_24993, agrovoc: agrovoc:c_1374567058134, agrovoc: agrovoc:c_7273, agrovoc: agrovoc:c_17299, agrovoc: agrovoc:c_8325, agrovoc: agrovoc:c_8323, agrovoc: agrovoc:c_11670, agrovoc: agrovoc:c_331597
550, QH301 Biology, F08 - Systèmes et modes de culture, adaptation aux changements climatiques, Gross primary productivity, 630, DIOXIDE EXCHANGE, DRYING IRRIGATION, SDG 13 - Climate Action, Biomass, F06 - Irrigation, GREENHOUSE-GAS EMISSIONS, Agriculture, Europe, Alternate wetting and drying, réduction des émissions, Besoin en eau, Net ecosystem exchange, Ressource en eau, P33 - Chimie et physique du sol, Above and below ground biomass, P40 - Météorologie et climatologie, Stress dû à la sécheresse, SEASONAL-VARIATION, GRAIN, Article, QH301, REDUCES METHANE EMISSION, P10 - Ressources en eau et leur gestion, Ecosystem, Decomposition, European rice cultivation, Conservation of Water Resources, Oryza, PADDY FIELD, Cycle hydrologique, SOIL, CO2 EMISSIONS, Biotechnology and Biological Sciences Research Council (BBSRC), ECOSYSTEM, BB/M018415/1, Cycle du carbone, agrovoc: agrovoc:c_5435, agrovoc: agrovoc:c_3081, agrovoc: agrovoc:c_24993, agrovoc: agrovoc:c_1374567058134, agrovoc: agrovoc:c_7273, agrovoc: agrovoc:c_17299, agrovoc: agrovoc:c_8325, agrovoc: agrovoc:c_8323, agrovoc: agrovoc:c_11670, agrovoc: agrovoc:c_331597
1 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
