Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of soil- and climate data aggregation on simulated potato yield and irrigation water requirement

Authors: Jonathan J. Ojeda; Ehsan Eyshi Rezaei; Tomas A. Remenyi; Mathew A. Webb; Heidi A. Webber; Bahareh Kamali; Rebecca M.B. Harris; +6 Authors

Effects of soil- and climate data aggregation on simulated potato yield and irrigation water requirement

Abstract

Input data aggregation affects crop model estimates at the regional level. Previous studies have focused on the impact of aggregating climate data used to compute crop yields. However, little is known about the combined data aggregation effect of climate (DAEc) and soil (DAEs) on irrigation water requirement (IWR) in cool-temperate and spatially heterogeneous environments. The aims of this study were to quantify DAEc and DAEs of model input data and their combined impacts for simulated irrigated and rainfed yield and IWR. The Agricultural Production Systems sIMulator Next Generation model was applied for the period 1998-2017 across areas suitable for potato (Solanum tuberosum L.) in Tasmania, Australia, using data at 5, 15, 25 and 40 km resolution. Spatial variances of inputs and outputs were evaluated by the relative absolute difference (rAD¯) between the aggregated grids and the 5 km grids. Climate data aggregation resulted in a rAD¯ of 0.7-12.1%, with high values especially for areas with pronounced differences in elevation. The rAD¯ of soil data was higher (5.6-26.3%) than rAD¯ of climate data and was mainly affected by aggregation of organic carbon and maximum plant available water capacity (i.e. the difference between field capacity and wilting point in the effective root zone). For yield estimates, the difference among resolutions (5 km vs. 40 km) was more pronounced for rainfed (rAD¯ = 14.5%) than irrigated conditions (rAD¯ = 3.0%). The rAD¯ of IWR was 15.7% when using input data at 40 km resolution. Therefore, reliable simulations of rainfed yield require a higher spatial resolution than simulation of irrigated yields. This needs to be considered when conducting regional modelling studies across Tasmania. This study also highlights the need to separately quantify the impact of input data aggregation on model outputs to inform about data aggregation errors and identify those variables that explain these errors.

Countries
Australia, Germany
Keywords

regional modeling, Environmental Engineering, Agricultural Irrigation, data aggregation, 550, Climate Change, 333, Tasmania, scale, Data Aggregation, Soil, 2305 Environmental Engineering, model uncertainty, Environmental Chemistry, Waste Management and Disposal, Solanum tuberosum, spatial heterogeneity, Australia, Water, data resolution, Pollution, 2311 Waste Management and Disposal, 2304 Environmental Chemistry, 2310 Pollution

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green