Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing differences in the response of forest aboveground biomass and composition under climate change in subtropical forest transition zone

Authors: Zhuo Wu; Erfu Dai; Zhifeng Wu; Meizhen Lin;

Assessing differences in the response of forest aboveground biomass and composition under climate change in subtropical forest transition zone

Abstract

The subtropical forest transition zone in southern China is a typical transition zone with high coverage and diverse vegetation. Projected climate change will affect physiological processes of trees, which would consequently alter the forest aboveground biomass (AGB) and composition at broad spatial scales. However, spatially heterogeneous responses may also be shaped by climate change, succession, and harvesting in different forest habitats. The objectives of this study were to assess the changes in subtropical forest AGB and composition in response to climate change, while comparing the responses of two similar forest landscapes: Taihe County (TH) and Longnan County (LN). We used a loose-coupling of PnET-II with LANDIS-II to simulate changes in forest AGB and composition under climate change scenarios (Current climate, RCP2.6, RCP4.5, RCP6.0, and RCP8.5) with harvest disturbances. Our simulation results demonstrated that forest AGB and composition were significantly affected by climate change in both landscapes. Changes in forest AGB was mostly driven by succession and harvest, but climate change also greatly contribute to the variation in AGB of deciduous broad-leaved forests (DBF), and coniferous forests (CF). Moreover, a larger area of LN experienced biomass reduction compared to TH, specifically under the RCP8.5 scenario. Given our estimates of the response in forest AGB and composition under climate change scenarios across different periods, we recommend that the regional forest management should be localized and should consider the effects of climate change through time in their planning schemes.

Related Organizations
Keywords

China, Climate Change, Forests, Trees, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%