
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of residual plastic-film mulch on field corn growth and productivity

pmid: 32361448
Effects of residual plastic-film mulch on field corn growth and productivity
Plastic-film mulching has played an important role to promote agricultural production in arid areas; however, due to its inefficient recycling capacity, large amounts of residues have been accumulated in soils, causing negative impacts on crop growth and on the environment. To investigate these effects on water use efficiency, a two-years field experiment was carried out, applying different levels of plastic-film residues, from 0 to 600 kg ha-1. Results show that these residues have a negative impact on root and shoot growth at several growth stages of corn crop, particularly if above 300 kg ha-1. Root length and weight density decrease with the amount of residues throughout the majority of crop season. Plastic-film residues of about 600 kg ha-1 are responsible for the decrease of the biomass root to shoot ratio during the tasseling stage. Moreover, during physiological maturity, root and shoot revealed the highest sensitivity, and the least negative effects on the root system. Results also show that crop water consumption has a slight decrease with the plastic-film residues, though there was also a significant decrease of the yield and the water use efficiency reduction. This information allows to state that it is determinant to learn how to deal with the problem, adjusting the irrigation and crop management to avoid yield impacts. It would also be important to find an efficient procedure to mechanically collect the residues in the soil, and to apply new biodegradable film mulching.
- Inner Mongolia Agricultural University China (People's Republic of)
- Inner Mongolia Agricultural University China (People's Republic of)
- Polytechnic Institute of Coimbra Portugal
- University of Lisbon Portugal
China, Water, Agriculture, Zea mays, Soil, Biomass, Plastics
China, Water, Agriculture, Zea mays, Soil, Biomass, Plastics
2 Research products, page 1 of 1
- 2002IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).103 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
