Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impacts of climate change and evapotranspiration on shrinkage of Aral Sea

Authors: Shuangyan, Huang; Xi, Chen; Cun, Chang; Tie, Liu; Yue, Huang; Chanjuan, Zan; Xiaoting, Ma; +2 Authors

Impacts of climate change and evapotranspiration on shrinkage of Aral Sea

Abstract

The massive desiccation of the Aral Sea, the fourth largest lake in the world, has led to severe ecological problems, expansion of cropland was thought to be the main factor driving that shrinkage. But this study performed a long-term land cover and use change assessment for Aral Sea Basin (ASB) to show that the cropland has stopped expanding in 2000, of which the cropland in the ASB plain area has decreased significantly (-140 km2/year) from 2001 to 2019. By contrast, this study finds the hydrological cycle in the ASB has intensified through a spatial and temporal scale approach based on Earth observation. Specifically, there is a 7.21 % (+304.56 × 108 m3) increase in annual total precipitation and a 10.13 % (+376.21 × 108 m3) increase in annual total actual evapotranspiration (AET) for the whole ASB during 1980-2019. In particular, the total annual AET in the ASB plain area has increased by 37.81 % (+718.92 × 108 m3), which almost depletes the water that should have flowed into the Aral Sea. Therefore, the Aral Sea shrank by 5625 × 108 m3 (or 42,944.32km2) from 1980 to 2019. Changing climate and increasing AET have accelerated the desiccation of the Aral Sea, and the expansion of cropland is no longer the main factor of that shrinkage. After more water was conserved in the ASB plain area, evapotranspiration plays a more vital role in the Aral Sea shrinkage. Reducing AET and unproductive water losses are key initiatives in future projects to save the Aral Sea. This study explores the causes of Aral Sea shrinkage from an integrated perspective of climate-land-water-ecological change across the ASB, bridging the limitations of previous studies that have focused on Aral Sea waters and subbasins.

Related Organizations
Keywords

Climate Change, Water, Lakes, Seawater

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%