Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Science of The T...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Digital.CSIC
Article . 2023 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ROV-based monitoring of passive ecological recovery in a deep-sea no-take fishery reserve

Authors: Vigo Fernandez, María; Navarro, Joan; Aguzzi, Jacopo; Bahamon, Nixon; García, José A.; Rotllant, Guiomar; Recasens, Laura; +1 Authors

ROV-based monitoring of passive ecological recovery in a deep-sea no-take fishery reserve

Abstract

In the context of marine conservation, trawl fishing activity is the most important ecosystem stressor in demersal Mediterranean waters. Limited management measures in bottom trawling have caused deep-sea stocks of the iconic Norway lobster Nephrops norvegicus to decrease over the last decade. This crustacean acts as an umbrella species for co-existing megafauna. Here, we used non-invasive Remote Operated Vehicle (ROV) video-surveys to investigate the status of a pilot deep-sea no-take reserve implemented in the northwestern Mediterranean by quantifying demographic indicators of Norway lobsters and the co-existing benthic community, seafloor restoration, and the presence of marine litter. The results revealed that in the no-take reserve the Norway lobster stock showed higher abundance and biomass, and slightly larger body sizes than in the control area without fishing prohibition. Some taxa, such as the fishes Helicolenus dactylopterus and Trigla lyra and anemones of the family Cerianthidae, increased in abundance. We also observed that all trawling marks were smoothed and most of the seafloor was intact, clear indicators of the recovery of the muddy seafloor. The accumulation of marine debris and terrestrial vegetation was similar in the no-take reserve and the fished area. On the basis of the results of this study, we suggest that the use of no-take reserves might be an effective measure for recovering the Norway lobster stock, its co-existing megafauna community, and the surrounding demersal habitat. We also suggest that ROV video-survey might be a useful, and non-invasive method to monitor megafauna and seafloor status in protected deep-sea environments.

Countries
Spain, Spain
Keywords

Norway, Fisheries, Fishes, //metadata.un.org/sdg/14 [http], Habitat restoration, Video-monitoring, Trawling, Deep sea, Nephrops norvegicus, Seafood, Animals, Biomass, Conserve and sustainably use the oceans, seas and marine resources for sustainable development, Ecosystem, Marine Protected Area

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 121
    download downloads 227
  • 121
    views
    227
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC121227
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
23
Top 10%
Top 10%
Top 10%
121
227
Green
hybrid
Related to Research communities
Energy Research