Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Forest herb species with similar European geographic ranges may respond differently to climate change

Authors: Radosław Puchałka; Sonia Paź-Dyderska; Łukasz Dylewski; Patryk Czortek; Michaela Vítková; Jiří Sádlo; Marcin Klisz; +5 Authors

Forest herb species with similar European geographic ranges may respond differently to climate change

Abstract

Many phenological studies have shown that spring geophytes are very sensitive to climate change, responding by shifting flowering and fruiting dates. However, there is a gap in knowledge about climatic drivers of their distributions and range shifts under climate change. Here we aimed to estimate climate niche shifts for four widely distributed and common geophytes of the nemoral zone of Europe (Anemone nemorosa, Anemone ranunculoides, Convallaria majalis and Maianthemum bifolium) and to assess the threat level under various climate change scenarios. Using MaxEnt species distribution models and future climate change scenarios we found that the precipitation of the warmest quarter was the most important factor shaping their ranges. All species studied will experience more loss in the 2061-2080 period than in 2041-2060, and under more pessimistic scenarios. M. bifolium will experience the highest loss, followed by A. nemorosa, A. ranunculoides, and the smallest for C. majalis. A. ranunculoides will gain the most, while M. bifolium will have the smallest potential range expansion. Studied species may respond differently to climate change despite similar current distributions and climatic variables affecting their potential distribution. Even slight differences in climatic niches could reduce the overlap of future ranges compared to present. We expect that due to high dependence on the warmest quarter precipitation, summer droughts in the future may be particularly severe for species that prefer moist soils. The lack of adaptation to long-distance migration and limited availability of appropriate soils may limit their migration and lead to a decline in biodiversity and changes in European forests.

Keywords

Europe, Soil, Climate Change, Biodiversity, Forests, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Energy Research