
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantifying key vegetation parameters from Sentinel-3 and MODIS over the eastern Eurasian steppe with a Bayesian geostatistical model

pmid: 37972784
Accurate estimation of grassland leaf area index (LAI), fractional vegetation cover (FVC), and aboveground biomass (AGB) is fundamental in grassland studies. The newly launched Ocean and Land Color Imager (OLCI) sensor onboard Sentinel-3 (S3) provides images with comparable spatial and spectral resolution with MODIS data. However, the use of S3 OLCI imageries for vegetation variable estimation is rarely evaluated. This study evaluated the potential of S3 OLCI and MODIS data for estimating grassland LAI, FVC, and AGB in the eastern Eurasian steppe. A Bayesian spatial model (Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation, INLA-SPDE) was used to address spatial autocorrelation of in-situ observation data and to enhance our predictions. Our results showed that the models based on S3 OLCI data presented higher accuracy than models with MODIS data. The RMSEs decreased by 3.7-10.8 %, 3.7-7.5 %, and 1.6-14.2 % for LAI, FVC, and AGB predictions, respectively. Through combinations of multiple predictors, we confirmed the robustness of red edge bands for grassland variable estimation, the models employing red edge variables yielded 3.5 %, 3.2 %, and 0.4 % lower RMSEs than models with conventional visible and NIR bands for LAI, FVC, and AGB prediction, respectively. INLA-SPDE spatial model produced lower bias and higher prediction accuracy than random forest and random forests kriging method in most of the models; the INLA-SPDE predicted LAI and FVC maps also showed a better agreement with ground observations than MODIS and PROBA-V land products.
- Moscow Aviation Institute Russian Federation
- Zhejiang Ocean University China (People's Republic of)
- Michigan State University United States
- University of Central Asia Kyrgyzstan
- Michigan State University United States
Plant Leaves, Spatial Analysis, Random Forest, Bayes Theorem, Biomass
Plant Leaves, Spatial Analysis, Random Forest, Bayes Theorem, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
