Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying key vegetation parameters from Sentinel-3 and MODIS over the eastern Eurasian steppe with a Bayesian geostatistical model

Authors: Zhenwang, Li; Lei, Ding; Beibei, Shen; Jiquan, Chen; Dawei, Xu; Xu, Wang; Wei, Fang; +7 Authors

Quantifying key vegetation parameters from Sentinel-3 and MODIS over the eastern Eurasian steppe with a Bayesian geostatistical model

Abstract

Accurate estimation of grassland leaf area index (LAI), fractional vegetation cover (FVC), and aboveground biomass (AGB) is fundamental in grassland studies. The newly launched Ocean and Land Color Imager (OLCI) sensor onboard Sentinel-3 (S3) provides images with comparable spatial and spectral resolution with MODIS data. However, the use of S3 OLCI imageries for vegetation variable estimation is rarely evaluated. This study evaluated the potential of S3 OLCI and MODIS data for estimating grassland LAI, FVC, and AGB in the eastern Eurasian steppe. A Bayesian spatial model (Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation, INLA-SPDE) was used to address spatial autocorrelation of in-situ observation data and to enhance our predictions. Our results showed that the models based on S3 OLCI data presented higher accuracy than models with MODIS data. The RMSEs decreased by 3.7-10.8 %, 3.7-7.5 %, and 1.6-14.2 % for LAI, FVC, and AGB predictions, respectively. Through combinations of multiple predictors, we confirmed the robustness of red edge bands for grassland variable estimation, the models employing red edge variables yielded 3.5 %, 3.2 %, and 0.4 % lower RMSEs than models with conventional visible and NIR bands for LAI, FVC, and AGB prediction, respectively. INLA-SPDE spatial model produced lower bias and higher prediction accuracy than random forest and random forests kriging method in most of the models; the INLA-SPDE predicted LAI and FVC maps also showed a better agreement with ground observations than MODIS and PROBA-V land products.

Keywords

Plant Leaves, Spatial Analysis, Random Forest, Bayes Theorem, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average