Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Waterl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainable Cities and Society
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Cities and Society
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comprehensive study of geothermal heating and cooling systems

Authors: Soltani, M.; Moradi Kashkooli, Farshad; Dehghani-Sanij, A. R.; Kazemi, A. R.; Bordbar, N.; Farshchi, M. J.; Elmi, M.; +2 Authors

A comprehensive study of geothermal heating and cooling systems

Abstract

Abstract Geothermal heat is an energy source that is local, reliable, resilient, environmentally-friendly, and sustainable. This natural energy is produced from the heat within the earth, and has different applications, such as heating and cooling of buildings, generating electricity, providing warm/cold water for agricultural products in greenhouses, and balneological use. Geothermal energy is not dependent on weather or climate and can supply heat and electricity almost continuously throughout the year. It may even be possible to use geothermal projects as “thermal batteries”, wherein waste or collected heat is stored for future use, even seasonal use, making geothermal energy “renewable” at a time scale of years. Extensive research has been carried out on different technologies and applications of geothermal energy, but comprehensive assessment of geothermal heating and cooling systems is relevant because of changing understanding, scale of application, and technology evolution. This study presents a general overview of geothermal heating and cooling systems. We provide an introduction to energy and the environment as well as the relationship between them; a brief history of geothermal energy; a discussion of district energy systems; a review of geothermal heating and cooling systems; a survey of geothermal energy distribution systems; an overview of ground source heat pumps; and, a discussion of ground heat exchangers. Recognition and accommodation of several factors addressed and discussed in our review will enhance the design and implementation of any geothermal heating or cooling system.

Related Organizations
Keywords

690, ground source heat pump (GSHP), heating and cooling systems, ground heat exchanger (GHE), geothermal energy, greenhouse gas (GHG) emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    194
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
194
Top 1%
Top 10%
Top 1%
Green
hybrid