
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Forecasting Electricity Consumption and Production in Smart Homes through Statistical Methods

handle: 11386/4780490 , 11367/98593
Abstract Over the last years, a steady increase in both domestic electricity consumption and in the adoption of personal clean energy production systems has been observed worldwide. By analyzing energy consumption and production on photovoltaic panels mounted in a house, this work focuses on finding patterns in electrical energy consumption and devising a predictive model. Our goal is to find an accurate method to predict electrical energy consumption and production. Being able to anticipate how consumers will use energy in the near future, homeowners, companies and governments may optimize their behavior and the import and export of electricity. We evaluated the ARIMA and TBATS statistical prediction methods and compared them with other models on datasets from a household equipped with photovoltaics and an energy management system. The evaluation results have shown a mean absolute error of 73.62 Watts for the TBATS model, which is far better than the one obtained with neural forecasting methods.
ARIMA; Electricity prediction; Energy management system; Photovoltaic panels; Smart house; TBATS
ARIMA; Electricity prediction; Energy management system; Photovoltaic panels; Smart house; TBATS
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
