Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Energy Grids and Networks
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep learning for estimating building energy consumption

Authors: HP Phuong Nguyen; WL Wil Kling; Madeleine Gibescu; Elena Mocanu;

Deep learning for estimating building energy consumption

Abstract

To improve the design of the electricity infrastructure and the efficient deployment of distributed and renewable energy sources, a new paradigm for the energy supply chain is emerging, leading to the development of smart grids. There is a need to add intelligence at all levels in the grid, acting over various time horizons. Predicting the behavior of the energy system is crucial to mitigate potential uncertainties. An accurate energy prediction at the customer level will reflect directly in efficiency improvements in the whole system. However, prediction of building energy consumption is complex due to many influencing factors, such as climate, performance of thermal systems, and occupancy patterns. Therefore, current state-of-the-art methods are not able to confine the uncertainty at the building level due to the many fluctuations in influencing variables. As an evolution of artificial neural network (ANN)-based prediction methods, deep learning techniques are expected to increase the prediction accuracy by allowing higher levels of abstraction. In this paper, we investigate two newly developed stochastic models for time series prediction of energy consumption, namely Conditional Restricted Boltzmann Machine (CRBM) and Factored Conditional Restricted Boltzmann Machine (FCRBM). The assessment is made on a benchmark dataset consisting of almost four years of one minute resolution electric power consumption data collected from an individual residential customer. The results show that for the energy prediction problem solved here, FCRBM outperforms ANN, Support Vector Machine (SVM), Recurrent Neural Networks (RNN) and CRBM.

Country
Netherlands
Keywords

Factored Conditional Restricted Boltzmann Machine, SDG 13 – Klimaatactie, Energy prediction, SDG 13 - Climate Action, Conditional Restricted Boltzmann Machine, SDG 7 - Affordable and Clean Energy, SDG 7 – Betaalbare en schone energie, Artificial Neural Networks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    502
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
502
Top 0.1%
Top 1%
Top 0.1%