Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Energy Grids and Networks
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainable and reliable hybrid AC/DC microgrid planning considering technology choice of equipment

Authors: Hasan Mehrjerdi; Zulkurnain Abdul-Malek; Shahram Jadid; Hedayat Saboori; Amirreza Naderipour; Amirreza Naderipour;

Sustainable and reliable hybrid AC/DC microgrid planning considering technology choice of equipment

Abstract

Abstract Today, the microgrid is not a new concept, and its diverse benefits for the grid and also consumers have been proven. One of the effective ways to enhance penetration level of the microgrids is to improve economic affordability. This can be achieved by defining an optimal investment plan which has been studied for the several past decades. Previous researches have been proposed a model which used a set of typical values as input parameters of the components. As a result, the optimization results may not be fully implementable in practice. In this regard, this paper proposes a new planning model for a hybrid AC–DCmicrogrid which selects the best technology from a set of commercial models already available in the market in addition to optimally selecting the size (number) of each equipment. Among the microgrid equipment, this capability is considered for storage batteries and wind turbines considering their variety of parameters and market models. The proposed model, while linear, takes into account the various parameters of the equipment in addition to the reliability and emission constraints. Results of implementing the proposed model on a test case demonstrated that outputs of the proposed model are more applicable to real practical projects.

Country
Qatar
Keywords

Microgrid planning, Reliability, Wind turbine technology, Emission, Mixed integer linear programming, Battery storage technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green
bronze