
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators

Abstract Gas cyclones have many industrial applications for separation of solids and liquids from gases. The geometry of the cyclone is the most influential parameter for its performance. This study investigates the effect of presence of an inner cone located at the bottom of the cyclone on the performance of the cyclone separator. Several CFD simulations in cyclones with inner cones with different diameters and heights were performed using the Reynolds stress turbulence model (RSM). The collection efficiency of the cyclone was studied using the Eulerian-Lagrangian approach. The results showed that the maximum tangential velocity is 1.6–1.7 times the inlet velocity. On the other hand, in the radial sections crossing the inner cone, the gradients of the axial and tangential velocities are zero. The maximum axial and tangential velocities occurred in the region between the top of the inner cone to the vortex finder. It was found that by increasing the inner cone height at constant diameter, the cyclone collection performance improves. An increase in the diameter of the inner cone, however, leads to a decrease in the cyclone performance. In overall, with an increase in the inner cone height and diameter, the pressure loss decreases. Finally, the erosion study was conducted using the Det Norske Veritas (DNV) erosion model. It was found that the value of coefficient of restitution affects the predicted erosion rate. In addition, the collection efficiency decreases when the erosion effect was included in the CFD model especially for higher velocities.
- Clarke University United States
- Clarke University United States
- Helwan University Egypt
- Semnan University Iran (Islamic Republic of)
- Semnan University Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).89 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
