Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Saudi Journal of Bio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Saudi Journal of Biological Sciences
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Saudi Journal of Biological Sciences
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contrasting effects of maize residue, coal gas residue and their biochars on nutrient mineralization, enzyme activities and CO2 emissions in sandy loess soil

Authors: Abdul Ghaffar Shar; Jiao Ya Peng; Xiaohong Tian; Tanveer Ahmed Siyal; Akhtar Hussain Shar; Jiang Yuhan; Rahul Datta; +1 Authors

Contrasting effects of maize residue, coal gas residue and their biochars on nutrient mineralization, enzyme activities and CO2 emissions in sandy loess soil

Abstract

Mismanagement of crop straw and coal gas residue threatens the atmosphere and the economy. Nevertheless, thermal-pyrolysis is an option for management that turns bio-waste into biochar; its viability and adoption by the public as soil amendments is dependent on the agronomic and environmental values compared between biochar and the raw materials. We undertook a 60-day short-term analysis to assess the impact of various wastes and biochars, as well as inorganic nutrients (N), on carbon dioxide (CO2) fluxes, soil enzyme activities, soil fertility status, and microbial activities. There were eight treatments of soil amendments: without an amendment (CK), Nutrients (N), straw + nutrients (S+N), straw biochar + nutrients (SB+N), coal gas residue + nutrients (C+N), coal gas residue biochar + nutrients (CB+N), straw + straw biochar + nutrients (S+SB+N) and coal gas residue waste + coal gas residue biochar + nutrients (C+ CB +N). The results indicated that soil EC, pH, nitrate N (NO3 -- N), SOC, TN and available K were significantly (p < 0.05) increased coal gas residue biochar and combined with coal fly ash as compared to maize straw biochar and combined with maize straw and N treatments. The higher concentrations of soil MBC and MBN activities were increased in the maize straw application, while higher soil enzyme activity such as, invertase, urease and catalase were enhanced in the coal fly ash derived biochar treatments. The higher cumulative CO2 emissions were recorded in the combined applications of maize straw and its biochar as well as coal gas residue and its biochar treatment. Our study concludes, that maize straw and coal fly ash wastes were converted into biochar product could be a feasible substitute way of discarding, since land amendment and decreased CO2 fluxes and positive changes in soil microbial, and chemical properties, and can be confirmed under long-term conditions for reduction of economical and environment issues.

Related Organizations
Keywords

QH301-705.5, Soil MBC and MBN, CO2 emissions, Biochar, Original Article, Soil enzymes activities, Biology (General)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold