
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Soil microarthropods are only weakly impacted after 13 years of repeated drought treatment in wet and dry heathland soils

handle: 11245/1.401348
Studies of biological responses in the terrestrial environment to rapid changes in climate have mostly been concerned with aboveground biota, whereas less is known of belowground organisms. The present study focuses on mites and springtails of heathland ecosystems and how the microarthropod community has responded to simulated climate change in a long-term field experiment. Increased temperature and repeated drought was applied for 13 years to field plots located in Wales, The Netherlands and Denmark representing sites of contrasting climatic conditions with respect to precipitation and temperature. This approach provided an opportunity to study biological responses on a local (within sites) and regional scale. Warming treatments increasing night time temperature (0.3-1 °C higher than ambient at 5 cm soil depth) had no detectable effects on the microarthropod communities. Increased intensity and frequency of drought had only weak persistent effects on springtail species composition, but practically no effect on major mite groups (Oribatida, Prostigmata or Mesostigmata) suggesting that ecosystem functions of microarthropods may only be transiently impacted by repeated spring or summer drought.
- Technical University of Denmark Denmark
- University of Amsterdam Netherlands
- University of Copenhagen Denmark
- Bangor University United Kingdom
- University of Copenhagen Denmark
570, Drought, Soil fauna, Meteorology and Climatology, Biology and Microbiology, Agriculture and Soil Science, Climate change, Collembola, Community composition, Acari
570, Drought, Soil fauna, Meteorology and Climatology, Biology and Microbiology, Agriculture and Soil Science, Climate change, Collembola, Community composition, Acari
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
