Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2016
License: CC BY NC ND
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2016
License: CC BY NC ND
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Solar Energy
Article . 2016 . Peer-reviewed
Data sources: Crossref
Solar Energy
Article . 2016 . Peer-reviewed
http://dx.doi.org/10.1016/j.so...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uncertainty analysis of a radiative transfer model using Monte Carlo method within 280–2500 nm region

Authors: Belluardo, Giorgio; Barchi, Grazia; Baumgartner, Dietmar; Rennhofer, Marcus; Weihs, Philipp; Moser, David;

Uncertainty analysis of a radiative transfer model using Monte Carlo method within 280–2500 nm region

Abstract

Abstract Radiative transfer models (RTM) are used to calculate spectral and broadband irradiance, given a set of input parameters that are representative of the atmospheric state. While many studies exist on their accuracy, there is still a research gap in the assessment of their uncertainty, due to the nonlinear and not differentiable nature of the Radiative Transfer Equation, which is the core of a RTM. This study evaluates the uncertainty of both spectral and broadband irradiance calculated with the radiative transfer model SDISORT implemented in the tool UVSPEC within the range 280–2500 nm. A set of input values representing the atmospheric state at Kanzelhohe Observatory (Austria) site at 10:00 on April 25th, 2013 is taken as reference and a Monte Carlo technique is used to propagate the uncertainty of input parameters to the model output. Both the effects of single input parameter uncertainty and of their combination are evaluated, as well as the influence of the deviation of input values from the reference set. Results show that ozone column is an important source of uncertainty in the UV-B region, while the uncertainties of Angstrom aerosol turbidity coefficient and extraterrestrial spectrum affect the whole spectral range. Considering a reasonable variability range for all involved input parameters, the overall uncertainty of broadband global horizontal irradiance is between 2.9% and 5.9%. These values are higher, but still comparable, to typical uncertainty values of outdoor-deployed spectroradiometers.

Keywords

Radiative transfer model; Uncertainty evaluation; Spectral irradiance, Radiative transfer model; Uncertainty evaluation; Spectral irradiance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 10
  • 3
    views
    10
    downloads
    Data sourceViewsDownloads
    ZENODO310
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
6
Top 10%
Average
Average
3
10
Green
hybrid