Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar active Ag/ZnO nanostructured arrays obtained by a combination of electrochemical and chemical methods

Authors: V. R. Kopach; R. V. Zaitsev; N. P. Klochko; G. S. Khrypunov; I.I. Tyukhov; K.S. Klepikova; M. V. Kirichenko; +3 Authors

Solar active Ag/ZnO nanostructured arrays obtained by a combination of electrochemical and chemical methods

Abstract

Abstract The work is devoted to the creation and research of solar active Ag/ZnO nanostructured arrays obtained by a combination of electrochemical and chemical methods. In order to enhance a solar activity of the electrodeposited in a pulsed mode nanostructured zinc oxide arrays and Ag/ZnO nanocomposites thereon we analyzed morphology, structure, electrical, electronic and optical properties of the electroplated 1-D ZnO as well as Ag nanoparticles, deposited from silver sol and Ag/ZnO nanocomposites formed by applying Ag nanoparticles to the ZnO surface. The investigated electrical and electronic parameters of ZnO and Ag/ZnO, which we obtained from their current–voltage and capacitance–voltage characteristics, are the electrical resistivity ρ , the height φ of the Schottky barriers in the electron depletion regions, the concentration of the fully ionized donor impurity N d , the density N SS of surface states and the width of the electron depletion region ω . The improved UV sensitivity of the electrodeposited in the pulsed mode 1-D ZnO and enhanced solar activity of Ag/ZnO were valued by dark and light current–voltage characteristics and through their temporal response curves under the influence of UV and visible sunlight. Analysis of electronic and electrical parameters, response and recovery performance of the obtained 1-D ZnO arrays and Ag/ZnO nanocomposites thereon let us to select the optimum manufacturing conditions for the creation of solar active plasmonic Ag/ZnO nanostructured arrays with high photosensitivity, fast response and reset times, and reproducible characteristics. So, our studies have allowed the development of a new solar active Ag/ZnO material for photocatalytic oxidation–reduction processes that can be used as photoelectrode for photocatalytic degradation of organic contaminations or for green hydrogen production by water splitting.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Energy Research