Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the determination of atmospheric longwave irradiance under all-sky conditions

Authors: Yuanjie Jiang; Carlos F.M. Coimbra; Mengying Li;

On the determination of atmospheric longwave irradiance under all-sky conditions

Abstract

Abstract In this work we review and recalibrate existing models, and present a novel comprehensive model for estimation of the downward atmospheric longwave (LW) radiation for clear and cloudy sky conditions. LW radiation is an essential component of thermal balances in the atmosphere, playing also a substantial role in the design and operation of solar power plants. Unlike solar irradiance, LW irradiance is not measured routinely by meteorological or solar irradiance sensor networks. In most cases, it must be calculated indirectly from meteorological variables using simple parametric models. Under clear skies, fifteen parametric models for calculating LW irradiance are compared and recalibrated. All models achieve higher accuracy after grid search recalibration, and we show that many of the previously proposed LW models collapse into only a few different families of models. A recalibrated Brunt-family model is recommended for future use due to its simplicity and high accuracy (rRMSE = 4.37%). To account for the difference in nighttime and daytime clear-sky emissivities, nighttime and daytime Brunt-type models are proposed. Under all sky conditions, the information of clouds is represented by cloud cover fraction (CF) or cloud modification factor (CMF, available only during daytime). Three parametric models proposed in the bibliography are compared and calibrated, and a new model is proposed to account for the alternation of vertical atmosphere profile by clouds. The proposed all-sky model has 3.8–31.8% lower RMSEs than the other three recalibrated models. If GHI irradiance measurements are available, using CMF as a parameter yields 7.5% lower RMSEs than using CF. For different applications that require LW information during daytime and/or nighttime, coefficients of the proposed models are corrected for diurnal and nocturnal use.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 1%
Top 10%
Top 10%