Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of the surface temperature of building-integrated photovoltaics: Development of a high accuracy correlation using computational fluid dynamics

Authors: Jan Carmeliet; Jan Carmeliet; Ruijun Zhang; Parham A. Mirzaei;

Prediction of the surface temperature of building-integrated photovoltaics: Development of a high accuracy correlation using computational fluid dynamics

Abstract

Building-integrated photovoltaic (BIPV) panels are generally expected to operate for over 25 years to be viewed as an economically viable technology. Overheating is known to be one of the major deficiencies in reaching the targeted lifespan goals. Alongside the thermal degradation, the operational efficiency of the silicon-based solar panel drops when the surface temperature exceeds certain thresholds close to 25 °C. Wind-driven cooling, therefore, is widely recommended to decrease the surface temperature of PV panels using cavity cooling through their rear surfaces. Wind-driven flow can predominantly contribute to cavity cooling if a suitable design for the installation of the BIPV systems is considered.In general, various correlations in the form of Nu=CReaNu=CRea are adapted from heat convection of flat-plates to calculate the heat removal from the BIPV surfaces. However, these correlations demonstrate a high discrepancy with realistic conditions due to a more complex flow around BIPVs in comparison with the flat-plate scenarios. This study offers a significantly more reliable correlation using computational fluid dynamics (CFD) technique to visualize and thus investigate the flow characteristics around and beneath BIPVs. The CFD model is comprehensively validated against a particle velocimetry and a thermography study by Mirzaei et al. (2014) and Mirzaei and Carmeliet (2013b). The velocity field shows a very good agreement with the experimental results while the average surface temperature has a 6.0 % discrepancy in comparison with the thermography study. Unlike the former correlations, the coefficients are not constant numbers, but a function of the airflow velocity, in the newly proposed correlation, which is in the form of View the MathML sourceNuL=0.1513ReL0.7065.

Country
United Kingdom
Keywords

Photovoltaics, Wind-driven, Surface temperature, Cavity cooling, Building, CFD

Powered by OpenAIRE graph
Found an issue? Give us feedback