Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2017
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage

Authors: Wokon, Michael; Block, Tina; Nicolai, Sven; Linder, Marc; Schmücker, Martin;

Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage

Abstract

Abstract Thermochemical energy storage (TCS) based on gas-solid reactions constitutes a promising concept to exploit reaction enthalpies for thermal energy storage. This concept facilitates the development of efficient storage solutions with higher energy densities compared to widely investigated sensible and latent thermal energy storage systems. Multivalent metal oxides are capable of undergoing a reversible redox reaction at high temperatures, which is why those storage materials are considered particularly suitable for the operating temperature range of concentrated solar power plants with central receiver systems to increase the total plant efficiency and ensure dispatchability of electricity. In the scope of this work a granular manganese-iron oxide with a Fe/Mn molar ratio of 1:3 has been selected as a potentially suitable storage material, which is non-toxic, abundant and economical. For this reason a preparation route from technical grade raw materials has been chosen. The reversible redox reaction is investigated with respect to the thermodynamic and kinetic characteristics by means of simultaneous thermal analysis in dynamic and isothermal series of measurements. Those revealed that the observed presence of a strong divergence of the reactive temperature range from the actual thermodynamic equilibrium can mainly be attributed to kinetic limitations. Expressions for the effective reaction rates are deduced from experimental data for the reduction and oxidation step, describing the dependence of the reaction rate on temperature and oxygen partial pressure, respectively. The expressions are valid for the temperature ranges in proximity to the equilibrium, which are relevant for the targeted operating conditions of the storage reactor in air. The storage material provides good cycling stability in terms of reversibility and widely maintained reactivity throughout 100 redox cycles in air. Future work comprises material modifications, which are expected to further enhance the mechanical stability of the particles. Overall, the manganese-iron oxide of the chosen composition exhibits a redox reactivity practical for regenerator-type storage systems combining a high temperature TCS zone and a lower temperature non-reactive zone merely used for sensible thermal energy storage.

Country
Germany
Keywords

Metal Oxides, Thermochemical Energy Storage, Manganese-Iron

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Top 10%