
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Techno-economic assessment of technological improvements in thermal energy storage of concentrated solar power

Abstract The technological and economic impact of design changes in thermal energy storage of concentrated solar power (CSP) systems is assessed. It is shown that the system costs change with the types of storage tanks and also that the operation temperature is limited by the thermal properties of the thermal storage medium. In addition, the cost of energy can be substantially reduced by replacing the conventional power cycle with more advanced power cycles, such as a supercritical carbon dioxide power cycle. Using two types of thermal storage tanks and two thermal storage media, cases are generated incorporating combinations of the design options. A sensitivity analysis is used to investigate the impacts of each technological improvement. The results of this work will contribute to predicting the impact of research and improving the economics of the CSP system.
- Korea University of Science and Technology Korea (Republic of)
- Korea University of Science and Technology Korea (Republic of)
- Yeungnam University Korea (Republic of)
- Korea Institute of Machinery and Materials Korea (Republic of)
- Yeungnam University Korea (Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
