
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Crosslinked polymer networks of poly(ethylene glycol) (PEG) and hydroxyl terminated poly(dimethyl siloxane) (HTPDMS) as polymeric phase change material for thermal energy storage

Abstract With an aim to prepare phase change material (PCM) as self-sustaining film from poly(ethylene glycol) (PEG) having reduced hydrophilicity, cross-linking of PEG and hydroxy-terminated poly(dimethyl siloxane) (HTPDMS) was done by using tetraethyl orthosilicate (TEOS) as a cross-linking agent. Following the confirmation of the crosslinked polymer using FTIR and 13C-solid state NMR, the crystallization properties were studied using X-ray diffraction and polarized optical microscopy. DSC analysis indicated an increase in enthalpy with increasing concentration of PEG. The enthalpy of fusion and crystallization was observed to reach a maximum of 125 and 104 J g−1 respectively. Contact angle of 89.5° has been achieved for polymer with highest concentration of HTPDMS. The material with lowest PEG concentration was film forming in nature. This material can be extensively used as a thermal energy storage material particularly, in smart packaging.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
