
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improvement of quantum and power conversion efficiency through electron transport layer modification of ZnO/perovskite/PEDOT: PSS based organic heterojunction solar cell

Abstract This paper represents perovskite material based hybrid (ITO/ZnO-ZnMgO (nano)/PCBM/CH3NH3PbI3-xClx/PEDOT: PSS/C3-SAM/Ag) organic solar cell with high quantum and power conversion efficiency. Due to the insertion of 3-aminopropanoic acid as an ambipolar self-assembled monolayer (C3-SAM) and ZnO/ZnMgO layer carrier collection efficiency increases. An optical modified structure is proposed (through the modification of ZnO/ZnMgO layer) to increase the surface to volume ratio and enhance the photon collection efficiency. As a result, the Internal quantum efficiency (IQE) increases 83.2% to 91.7% fill factor (FF) changes from 77% to 85%, short circuit current density (Jsc) changes from 14.9 mA/cm2 to 21 mA/cm2, and overall solar cell efficiency increases from 9.17 to 14.7%.
- Mizoram University India
- Mizoram University India
- K L University India
- Tezpur University India
- K L University India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
