Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic performance evaluation and improvement of PV energy generation systems using Moth Flame Optimization with combined fractional order PID and sliding mode controller

Authors: Mohammed Salah Bouakkaz; Ahcene Boukadoum; Omar Boudebbouz; Nadir Fergani; Nadir Boutasseta; Issam Attoui; Ahmed Bouraiou; +1 Authors

Dynamic performance evaluation and improvement of PV energy generation systems using Moth Flame Optimization with combined fractional order PID and sliding mode controller

Abstract

Abstract The output power of Photovoltaic (PV) energy generation systems depends mainly on operating conditions that include climatic conditions and occurrence of faults. Current-Voltage characteristic curves show different operating regions that are characterized by different transient responses in varying operating conditions and in the special case of the presence of the partial shading condition. In this paper, a dynamic performance evaluation of the PV system is performed both in open loop and in the presence of a feedback controller. Analysis shows that the PV system is affected when operating in different regions and environmental conditions and is characterized by a complex dynamic behavior. To improve the PV system dynamics, an adapted control strategy is proposed where the PV voltage is regulated using a Fractional Order PID controller tuned in various regions and partial shading patterns using Particle Swarm Optimization, whereas the PV current is regulated using a sliding mode controller that does not require using Pulse Width Modulation (PWM). In the present study, it is also shown that MPPT algorithms are affected by the conventional tuning approach of the feedback controller. To remedy to this issue, the Moth Flame Optimization based MPPT technique is implemented associated with the proposed control strategy to improve the performance PV system in different operating conditions. The proposed dynamic performance improvement strategy shows excellent transient responses in various operating scenarios.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 1%
Top 10%
Top 1%