Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Highly porous Ba3Ti4Nb4O21 perovskite nanofibers as photoanodes for quasi-solid state dye-sensitized solar cells

Authors: Ahmed M. Hafez; Nageh K. Allam; Latika Menon; Eugen Panaitescu; Ahmed M. Abdellah;

Highly porous Ba3Ti4Nb4O21 perovskite nanofibers as photoanodes for quasi-solid state dye-sensitized solar cells

Abstract

Abstract Ternary oxides are considered promising electrode materials for light harvesting devices due to their optical and electronic properties that can be tuned by controlling their composition and doping ratio. Herein, a facile approach is demonstrated to fabricate ternary oxide perovskite nanofibers (NFs) and their investigation investigated as efficient electrode materials in dye-sensitized solar cells (DSSCs). The fabricated electrospun hexagonal perovskite-like (A3B8O21) nanofibers are made of several small single crystals that are connected together to several micrometers in length. Upon sintering to 650 ⁰C, highly porous perovskite nanofibers were obtained, which increased the dye adsorption capacity of the nanofibers and in turn resulted in higher photoconversion efficiency than the traditional nanotubes counterparts. The crystallinity, chemical, and thermal characteristics of the fabricated NFs were investigated using XRD, SEM, TEM, and TGA analyses. Moreover, Brunauer–Emmett–Teller (BET) measurements were used to evaluate the effect of annealing temperature on the pore size and the overall surface area of the NFs. The fabricated nanofibers were used to construct full solar cell devices, revealing enhancement in the overall performance as indicated via the photocurrent-voltage curves. This enhancement is mainly related to the higher adsorption rate of the dye on the nanofibers surface. Highly porous electrospun nanofibers are good platforms that should be useful for the future development of solar cell devices.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Related to Research communities
Energy Research