Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020
Data sources: OpenAIRE
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Solar Energy
Article . 2020 . Peer-reviewed
http://dx.doi.org/10.1016/j.so...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico

Authors: Sebastian Gutierrez; Eduardo Fernández; Pedro M. Rodrigo; Pedro M. Rodrigo; Florencia Almonacid; Leonardo Micheli;

Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico

Abstract

Abstract In this paper, the soiling impact on photovoltaic systems in Aguascalientes, in central Mexico, an area where 1.4GWp of new photovoltaic capacity is being installed, is characterised experimentally. A soiling rate of −0.16%/day in the dry season for optimally tilted crystalline silicon modules, and a stabilization of the soiling losses at 11.2% after 70 days of exposure were observed. With these data, a first of its kind novel method for determining optimum cleaning schedules is proposed based on minimising the levelised cost of energy. The method has the advantages compared to other existing methods of considering the system investment cost in the determination of the optimum cleaning schedule. Also, it does not depend on economic revenue data, which are often subject to uncertainty. The results show that residential and commercial systems should be cleaned once per year in Aguascalientes. On the other hand, cleaning intervals from 12 to 31 days in the dry season were estimated for utility-scale systems, due to the dramatic decrease of cleaning costs per unit photovoltaic capacity. We also present a comparative analysis of the existing criteria for optimising cleaning schedules applied to the same case study. The different methods give similar cleaning intervals for utility-scale systems and, thus, the choice of a suitable method depends on the availability of information.

Country
Italy
Keywords

Renewable Energy, Sustainability and the Environment, cleaning schedule; crystalline silicon; levelised cost of energy; Mexico; photovoltaic; soiling, General Materials Science, MAG: Schedule, MAG: Photovoltaic system, MAG: Environmental engineering, MAG: Revenue, MAG: Environmental science, MAG: Investment cost, MAG: Crystalline silicon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Green
bronze