
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Facile sputtering enables double-layered ZnO electron transport layer for PbS quantum dot solar cells

Facile sputtering enables double-layered ZnO electron transport layer for PbS quantum dot solar cells
Abstract PbS colloidal quantum dot solar cells (CQDSCs) employ ZnO electron transport layer have achieved high efficiency. However, there is nearly no efficient and batch production method to balance the charge separation and recombination within the device, which is one of the most obviously barrier to a satisfactory conversion efficiency. Here, a n+-n double-layered ZnO electron transport layer (DETL) is prepared by a facile one-step magnetron sputtering under different Ar pressure, and employed in heterojunction PbS colloidal quantum dot solar cells (CQDSCs) for the purpose of increasing charge separation at heterojunction interface via energy-band alignment modulation. The ZnO DETL, composed of a 100-nm-thick n+-ZnO bottom layer (n = 8 × 1019 cm−3) and a 20-nm-thick n-ZnO top layer (n = 3 × 1016 cm−3) significantly improve the power conversion efficiency (PCE) of the CQDSCs by a factor of ~35% compared to the device with single-layered n- ZnO. Open-circuit photovoltage decay (OCVD) measurements prove that the graded energy alignment of ZnO DETL effectively reduces both interfacial and trapping-assisted charge recombination, relative to the single-layered ZnO. The facile Ar-pressure tuning method makes the energy-band alignment process more convenient and sheds a light on the application of DETL electrons transport layer, fabricated by the universal technique of magnetron sputtering.
- Northeast Normal University China (People's Republic of)
- Ministry of Education of the People's Republic of China China (People's Republic of)
- Zhongyuan University of Technology China (People's Republic of)
- Zhongyuan University of Technology China (People's Republic of)
- Ministry of Education of the People's Republic of China China (People's Republic of)
11 Research products, page 1 of 2
- 2018IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
