
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Remanent solvent management engineering of perovskite films for PEDOT: PSS-based inverted solar cells

Abstract Perovskite solar cells (PSCs) have been attracting tremendous attention due to ease of processing, flexibility, and high performance. Dimethyl sulfoxide (DMSO) and N, N-dimethylformamide (DMF) are the two most widely used solvents to dissolve perovskite precursors. Here, we investigate the impact of residual amount and evaporation rate of the DMSO inside the precursor films on the microstructure of the ultimate perovskite films. We decouple the DMSO and DMF solvents and demonstrate that DMSO component exhibits great and dominant influence on the final film morphology by using quasi in-situ photoluminescence (PL) measurement and X-ray diffraction (XRD) characterization of the wet films after spin-coating. Much more smooth and uniform perovskite films are obtained by careful management of remanent solvent, including decreasing residual amount by shelving the precursor films prior to heating and retarding the evaporation of the solvent via adopting a gradient annealing (GA) process. In consequence, the as-prepared PEDOT: PSS-based inverted PSCs yield a champion efficiency of 15.59% with high reproducibility. This work shows great potential in preparing high-quality perovskite films through a simple remanent solvent management engineering.
- Southeast University China (People's Republic of)
- Southwest Petroleum University China (People's Republic of)
- Southeast University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
