Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.60692/bc...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/9w...
Other literature type . 2021
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation and experimental performance analysis of partially floating PV system in windy conditions

المحاكاة وتحليل الأداء التجريبي للنظام الكهروضوئي العائم جزئيًا في الظروف العاصفة
Authors: Nabil A.S. Elminshawy; Amr Osama; D.G. El-Damhogi; Erkan Oterkus; A.M.I. Mohamed;

Simulation and experimental performance analysis of partially floating PV system in windy conditions

Abstract

Le système solaire photovoltaïque flottant (FPVT) est un nouveau concept de récupération d'énergie solaire qui contribue à la demande croissante d'énergie, mais avec des performances plus élevées par rapport au système terrestre (LBPV). La température de fonctionnement d'un système FPVT est inférieure et l'efficacité est meilleure que celle d'un système LBPV. L'étude expérimentale actuelle vise à améliorer encore la supériorité de la technologie photovoltaïque flottante grâce à un système innovant partiellement flottant (FPVWS) pour plus de récupération d'énergie. La partie sous-marine permet une gestion fiable de la température du système photovoltaïque via un transfert de chaleur mutuel avec l'eau ambiante et améliore par conséquent la production d'électricité. Ensuite, une installation flottante expérimentale a été construite pour examiner les performances du nouveau système FPVWS dans des conditions de vent réel et la raison de cette domination a été expliquée. Les données acquises ont démontré que la température de fonctionnement du FPVWS a diminué de 11,60 %, que la puissance de sortie a augmenté d'environ 20,28 % et que l'efficacité électrique a augmenté de 32,82 % avec une augmentation de 49 % de la vitesse du vent. Les performances du module FPVT sont améliorées grâce à la technique d'immersion et à la direction favorable du flux de vent nordouest, qui a fourni le plus de gain à ses performances. Le coût nivelé de l'énergie a diminué de 17 % ainsi qu'une réduction des émissions mondiales moyennes de CO2 de 69,51 kg de CO2/saison estivale avec une augmentation de 49 % de la vitesse du vent.

El sistema solar fotovoltaico flotante (FPVT) es un nuevo concepto para la captación de energía solar que contribuye a la creciente demanda de energía pero con un mayor rendimiento en comparación con el sistema terrestre (LBPV). La temperatura de trabajo de un sistema FPVT es menor y la eficiencia es mejor que la de un sistema LBPV. El estudio experimental actual tiene como objetivo mejorar aún más la superioridad de la tecnología fotovoltaica flotante a través de un innovador sistema parcialmente flotante (FPVWS) para una mayor cosecha de energía. La parte subacuática permite una gestión fiable de la temperatura del sistema fotovoltaico a través de la transferencia mutua de calor con el agua ambiente y, en consecuencia, mejora la producción de electricidad. Luego, se construyó una configuración flotante experimental para examinar el rendimiento del nuevo sistema FPVWS en condiciones de viento real y se explicó la razón de tal dominancia. Los datos adquiridos demostraron que la temperatura de trabajo del FPVWS se redujo en un 11,60%, la potencia de salida aumentó en aproximadamente un 20,28% y la eficiencia eléctrica aumentó en un 32,82% con un incremento del 49% en la velocidad del viento. El rendimiento del módulo FPVT se mejora con la técnica de inmersión y la dirección favorable del flujo de viento hacia el noroeste, que proporcionó la mayor ganancia a su rendimiento. El coste nivelado de la energía disminuyó un 17% junto con una reducción de las emisiones medias mundiales de CO2 de 69,51 kg CO2/temporada de verano a un incremento del 49% en la velocidad del viento.

The floating solar photovoltaic system (FPVT) is a new concept for solar energy harvesting that contributes to growing energy demand but with higher performance compared to the land-based system (LBPV). The working temperature of an FPVT system is lower and the efficiency is better than that of an LBPV system. The current experimental study aims to further enhance the superiority of floating PV technology through an innovative partially floating (FPVWS) system for more energy harvest. The underwater portion allows reliable temperature management for the PV system via mutual heat transfer with the ambient water and consequently enhances the electricity production. Then an experimental floating set up has been constructed to examine the performance of the new FPVWS system under real windy conditions and the reason for such dominance was explained. The acquired data demonstrated that the working temperature of the FPVWS reduced by11.60%, the output power rose by about 20.28%, and the electrical efficiency rose by 32.82% at a 49% increment in wind speed. The performance of the FPVT module is improved with the submerging technique and the favorable northerly-westerly wind flow direction, which provided the most gain to its performance. The levelized cost of energy decreased by 17% along with a reduction in global average CO2 emissions of 69.51 kg CO2/summer season at a 49% increment in wind speed.

النظام الكهروضوئي الشمسي العائم (FPVT) هو مفهوم جديد لحصاد الطاقة الشمسية يساهم في زيادة الطلب على الطاقة ولكن مع أداء أعلى مقارنة بالنظام الأرضي (LBPV). درجة حرارة العمل لنظام FPVT أقل والكفاءة أفضل من نظام LBPV. تهدف الدراسة التجريبية الحالية إلى زيادة تعزيز تفوق التكنولوجيا الكهروضوئية العائمة من خلال نظام مبتكر عائم جزئيًا (FPVWS) لمزيد من حصاد الطاقة. يسمح الجزء تحت الماء بإدارة موثوقة لدرجة الحرارة للنظام الكهروضوئي عن طريق نقل الحرارة المتبادل مع المياه المحيطة وبالتالي يعزز إنتاج الكهرباء. ثم تم إنشاء مجموعة عائمة تجريبية لفحص أداء نظام FPVWS الجديد في ظل ظروف عاصفة حقيقية وتم شرح سبب هذه الهيمنة. أظهرت البيانات التي تم الحصول عليها أن درجة حرارة العمل لـ FPVWS انخفضت بنسبة 11.60 ٪، وارتفعت طاقة الخرج بنحو 20.28 ٪، وارتفعت الكفاءة الكهربائية بنسبة 32.82 ٪ بزيادة 49 ٪ في سرعة الرياح. يتم تحسين أداء وحدة FPVT باستخدام تقنية الغمر واتجاه تدفق الرياح الشمالية الغربية المواتي، مما يوفر أكبر مكسب لأدائها. انخفضت التكلفة المستوية للطاقة بنسبة 17 ٪ إلى جانب انخفاض المتوسط العالمي لانبعاثات ثاني أكسيد الكربون بمقدار 69.51 كجم من ثاني أكسيد الكربون/موسم الصيف بزيادة قدرها 49 ٪ في سرعة الرياح.

Country
United Kingdom
Keywords

690, Atmospheric sciences, 330, Cost of electricity by source, Marine engineering, Automotive engineering, Photovoltaic/Thermal Hybrid Technology, Quantum mechanics, Environmental science, Wind speed, Engineering, Meteorology, Solar energy, Electricity, FOS: Electrical engineering, electronic engineering, information engineering, Multijunction Solar Cell Technology, Electrical and Electronic Engineering, Photovoltaic system, Electricity generation, Energy, Energy Conversion Efficiency, Renewable Energy, Sustainability and the Environment, Physics, Hydraulic engineering. Ocean engineering, Geology, FOS: Earth and related environmental sciences, Power (physics), Computer science, Photovoltaic Efficiency, Atmospheric Water Harvesting, Electrical engineering, Physical Sciences, Solar Thermal Energy Technologies, Solar-Powered Water Desalination Technologies, TC

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 1%
Green