Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells

Authors: Chris Flynn; Xiaojing Hao; Gavin Conibeer; Martin A. Green; Yansong Shen; Sungchan Park; Eun-Chel Cho;

Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells

Abstract

Abstract Multiple layers of Si quantum dots (QDs) in SiO 2 with a narrow size distribution were synthesized by a co-sputtering technique. Structural, electrical and optical properties of Si QD/SiO 2 multilayer films with various boron (B) concentrations introduced during the sputtering process were studied. X-ray photoelectron spectroscopy (XPS) revealed B–B/B–Si bonding, which suggests possible boron inclusion in the nanocrystals. The addition of boron was observed to suppress Si crystallization, though the boron concentration was found to have little effect on the QD size. Reductions in film resistivity were observed with the increase in boron concentration, which is believed to be a consequence of an increase in carrier concentration. This is supported by a large decrease in the activation energy accompanying the drop in resistivity, consistent with the Fermi energy moving towards the valence bands. The photoluminescence (PL) intensity was found to decrease with increase in boron concentration.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 1%
Related to Research communities
Energy Research