
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review

Solar Photovoltaic (PV) cells can absorb up to 80% of the incident solar radiation obtained from the solar band, however, only a small amount of this absorbed incident energy is transformed into electricity depending on the conversion efficiency of the PV cells and part of remainder energy increases the temperature of PV cell. High solar radiation and ambient temperature lead to an elevated photovoltaic cell operating temperature, which affects its lifespan and power output adversely. Number of techniques have been attempted to maintain the temperature of photovoltaic cells close to their nominal operating value. In the present review various cooling techniques such as natural and forced air cooling, hydraulic cooling, heat pipe cooling, cooling with phase change materials and thermoelectric cooling of PV panels are discussed at length. It is important to note that, though cooling techniques are highly needed to regulate the PV module temperature, especially for mega installations, these should be economically viable too.
690, Latent heat, 570, [ SPI.ENERG ] Engineering Sciences [physics]/domain_spi.energ, 621, Photovoltaic (PV) cell, [SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ, Temperature regulation, Heat pipe, Phase change material
690, Latent heat, 570, [ SPI.ENERG ] Engineering Sciences [physics]/domain_spi.energ, 621, Photovoltaic (PV) cell, [SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ, Temperature regulation, Heat pipe, Phase change material
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).241 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
