Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: A microstructural study

Authors: Chuan Li; Xianglei Liu; Yongliang Li; Yulong Ding; Yimin Xuan; Qi Li; Lin Cong;

Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: A microstructural study

Abstract

Abstract We investigated the microstructures and their formation mechanisms of carbonate salt based composite phase change materials (CPCMs). Such materials typically consist of a carbonate salt as the phase change material (PCM), a thermal conductivity enhancement material (TCEM) and a ceramic skeleton material (CSM) for structure stabilisation, and are mainly for medium and high temperature thermal energy storage applications. Two carbonate salt based composites were studied with one being eutectic NaLiCO3 and the other Na2CO3. MgO and graphite flakes were used respectively as the CSM and TCEM for fabricating the composite modules. A scanning electron microscope with energy dispersive spectrometer (SEM-EDS) was used to observe the microstructures and the salt distribution and redistribution within the composite structures during repeated melting-solidification cycles. The results showed salt migration within the composite structure during the thermal cycling. Such a microscopic motion led to a more homogenous distribution of not only the salt but also the CSM and TCEM. At a low graphite flake loading, breakage of the graphite flake was observed, suggesting stress generation during thermal cycling. The extent of the breakage reduced with increasing graphite flake loading, suggesting the stress generation be related to microscopic motion. The MgO based CSM particles were likely to be sintered, forming a porous structure. Such a structure reduced the swelling effect partially due to the use of graphite on which the salts had a poor wettability.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 1%