Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preliminary study of passive radiative cooling under Singapore's tropical climate

Authors: Han, Di; Ng, Bing Feng; Wan, Man Pun;

Preliminary study of passive radiative cooling under Singapore's tropical climate

Abstract

Abstract Sub-ambient cooling can be achieved through radiative coolers that selectively emit radiation within the atmospheric window (8–13 μm) to outer space and suppress absorption/emission of other wavelengths. This study explores the feasibility of adopting radiative cooling in the hot and humid climate of Singapore through both numerical and experimental approaches. A theoretical simulation based on the heat transfer balance is first proposed to obtain the cooling power of the radiative cooler considering different solar spectral irradiance and total water vapor column. The larger solar irradiance in Singapore, especially within the ultraviolet and visible light spectrum where the absorbance of the material is relatively high, could counteract its cooling effects. Moreover, the increased atmospheric radiation induced by higher humidity and temperatures in Singapore could worsen cooling performances of the radiative material. Next, experimental investigations were conducted by measuring the steady-state temperatures of two radiative coolers (photonic radiative cooler and enhanced specular reflector film) under three typical weather conditions in Singapore, namely clear, partly cloudy and cloudy skies. While both radiative coolers were unable to achieve daytime cooling performance on a clear day, the enhanced specular reflector (ESR) film with higher solar reflectance can reach sub-ambient temperatures on a cloudy day. When it comes to night-time, the steady-state temperature of the photonic radiative cooler and ESR film was about 3.5 °C and 5 °C lower than ambient, respectively.

Country
Singapore
Related Organizations
Keywords

670, Solar Irradiance, 500, 620, Engineering::Mechanical engineering, :Mechanical engineering [Engineering], Radiative Cooling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 1%
Top 10%
Top 1%
Green