Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energy Materia...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy Materials and Solar Cells
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tailored transition temperature plastic crystals with enhanced thermal energy storage capacity

Authors: Angel Serrano; Mikel Duran; Jean-Luc Dauvergne; Stefania Doppiu; Elena Palomo Del Barrio;

Tailored transition temperature plastic crystals with enhanced thermal energy storage capacity

Abstract

Abstract Pentaerythritol (PE), pentaglycerine (PG), and neopentylglycol (NPG) are non-ionic plastic crystal with high potential for latent heat thermal energy storage (TES) in solar heating applications. These molecules undergo reversible solid phase transitions with unusually large enthalpy of transition (110 J/g - 300 J/g) in the temperature range from 44 °C to 185 °C. To further enhance their heat storage capacity while lowering their price and preserving the advantage of solid phase transitions, a new class of shape-stabilized phase change materials (SSPCMs) in which a polyalcohol with adjustable solid phase transition properties (NPG/PG or PE/PG mixture) supports a cheaper and with higher latent heat solid-liquid PCM (paraffin wax) is proposed in this work. Combined with properly chosen paraffin waxes, NPG/PG mixtures allow tailoring the working temperature of corresponding SSPCMs between 24 °C and 81 °C, whereas PE/PG mixtures allow SSPCMs with phase change adjusted within 81 °C–190 °C temperature range. Produced SSPCMs were thoroughly characterized and their efficiency in terms of heat storage capacity and delivered power upon heat discharge were evaluated. The results achieved show proper anti-leakage effect due to good wettability between paraffins and polyalcohols and inner microstructure of SSPCMs promoting capillarity. In addition, volumetric latent heat storage capacity has been proven to be enhanced up to 45% compared to pure polyalcohols without detrimental effect in discharging power.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
hybrid