Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of nanostructure in the behaviour of BiVO4–TiO2 nanotube photoanodes for solar water splitting in relation to operational conditions

Authors: Claudio Ampelli; Daniele Giusi; João Angelo Lima Perini; João Angelo Lima Perini; Sidney José Lima Ribeiro; Gabriele Centi; Francesco Tavella; +3 Authors

Role of nanostructure in the behaviour of BiVO4–TiO2 nanotube photoanodes for solar water splitting in relation to operational conditions

Abstract

Abstract BiVO4 nanoparticles deposited onto TiO2 nanotube arrays (TNT) are used as heterostructured photoanodes in a compact-design photo-electrocatalytic (PEC) cell for solar-driven water splitting. No dopants, photosensitizers or other cocatalysts are added to enhance the catalytic activity but attention is focused on the relationship between TNT nanostructure (necessary for the novel compact-design PEC cell) and method of BiVO4 deposition. Three indicators are used to evaluate the catalytic performances: i) photocurrent density, ii) H2 production rate, and iii) solar-to-hydrogen efficiency (STH). Their dependence on photoanode characteristics (i.e. grade of TNT crystallinity) and operational parameters, such as anolyte concentration (NaOH in the range 0.1–1.0 M) and type of solar illumination (open spectrum or AM 1.5G filtered light), is analysed. While a linear relationship is observed between H2 production rate and photocurrent density, the behaviour of STH efficiency is more complex. An ordered and crystalline TNT film is necessary to maximize photocurrent density and H2 production rate, which can be further enhanced by depositing BiVO4. However, the methodology of BiVO4 deposition and the specific TNT nanoarchitecture have a marked influence in terms of light absorption, electronic conductivity and rate of reaction between photogenerated holes and OH−. This leads to an improvement or a depression of the photocatalytic behaviour as BiVO4 may in some cases favour charge recombination. Thus, understanding the role of the photoelectrodes in relation to the operational conditions may favour the preparation of scalable electrodes for improving performances of PEC cells in the generation of solar fuels.

Countries
Italy, Brazil
Keywords

Photo-electrocatalysis (PEC), Water splitting, H2 production, TiO2 nanotubes, Bismuth vanadate, Nanoheterojunction, Photo-electrocatalysis (PEC), TiO2 nanotubes, Nanoheterojunction, 600, H2 production, Water splitting, Bismuth vanadate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
Related to Research communities
Energy Research