Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Computin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Computing Informatics and Systems
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intelligent wild geese algorithm with deep learning driven short term load forecasting for sustainable energy management in microgrids

Authors: Deepanraj, B.; Senthilkumar, N.; Jarin, T.; Gürel, Ali Etem; Sundar, L. Syam; Anand, A. Vivek;

Intelligent wild geese algorithm with deep learning driven short term load forecasting for sustainable energy management in microgrids

Abstract

Energy management in power grids becomes essential to reduce the cost for the consumer and improve the power supply reliability. The microgrid is a vital part of the smart grid and it requires intelligent power management approach for effective functioning. Presently, delivering demand load and sustaining energy are two major challenges that exist in the power system. To resolve these problems, short-term load forecasting (STLF) models have been presented as an effective management and energy supply mode in power systems. The recently developed deep learning (DL) and machine learning (ML) models can be employed for accurate STLF in microgrids. In this view, this study presents an intelligent wild geese algorithm with deep learning driven short term load forecasting (IWGADL-STLF) model for sustainable energy management in microgrids. The proposed IWGADL-STLF model intends to accurately and rapidly predict the STLF in the microgrids. To accomplish this, the IWGADL-STLF model uses attention based Bi-directional long short term memory (ABiLSTM) model which involves the input parameters as formation of household and commercial load profiles with commercial load profile of the microgrid as output. The proposed IWGADL-STLF model identifies the behavioural patterns of parameters and models the behaviour in short time period for effective prediction process. Since hyper -parameters play a vital role in the DL models, in this study, WGA is applied as a hyperparameter optimizer of the ABiLSTM model. The IWGADL-STLF approach has shown effective results with low MAE, MAPE, and R2 values. A comprehensive experimental analysis reported the enhanced performance of the presented model over the other existing approaches under several aspects.

Country
Turkey
Keywords

Sustainability; Energy Management; Smart Grids; Deep Learning; Hyperparameter Optimization; Short Term Load Forecasting, Model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%