

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improved TGA-MS measurements for evolved gas analysis (EGA) during pyrolysis process of various biomass feedstocks. Syngas energy balance determination

Abstract This paper provides in-depth knowledge about the evolved gas analysis interpretation via newly proposed semi-quantitative approach, arising from thermogravimetric analysis (TGA) – mass spectrometry (MS) coupled measurements, for studying pyrolysis behavior of three kinds of biomass waste materials (spent coffee grounds, beech sawdust and wheat straw). TGA – MS coupling allows accurate correlation between molecular ion peak and fragment peaks to the corresponding mass loss rates from derivative thermogravimetry curves. Within proposed semi-quantitative analysis, MS spectra were interpreted through the comparative analysis of compounds fragments and of the compound itself, where the single atomic mass unit was identified by multiple compounds exhibition. It was shown that by this procedure which involves overlapping multiple curves supervising, the identification of gases in volatiles complex scheme becomes more simplified. By setting up semi-quantitative formulas, easy and reliable calculations of gaseous products yield and syngas energy capacities are possible to achieve. The H2/CO ratio derived from the proposed method for wood waste product (sawdust) is in an excellent agreement with H2/CO ratio for sawdust syngas production, in fuel reactor for biomass gasification and H2 production.
Syngas energy capacity, Evolved gas analysis, Biomass, TGA-MS, Ionic reaction mechanism
Syngas energy capacity, Evolved gas analysis, Biomass, TGA-MS, Ionic reaction mechanism
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 42 download downloads 2 - 42views2downloads
Data source Views Downloads VinaR - Repository of the Vinča Institute of Nuclear Sciences, University of Belgrade 42 2


