
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Diversity meets decomposition

pmid: 20189677
Over 100 gigatons of terrestrial plant biomass are produced globally each year. Ninety percent of this biomass escapes herbivory and enters the dead organic matter pool, thus supporting complex detritus-based food webs that determine the critical balance between carbon mineralization and sequestration. How will changes in biodiversity affect this vital component of ecosystem functioning? Based on our analysis of concepts and experiments of leaf decomposition in forest floors and streams, we suggest that changes in species diversity within and across trophic levels can significantly alter decomposition. This happens through various mechanisms that are broadly similar in forest floors and streams. Differences in diversity effects between these systems relate to divergent habitat conditions and evolutionary trajectories of aquatic and terrestrial decomposers.
- ETH Zurich Switzerland
- Colorado State University United States
- French National Centre for Scientific Research France
- Centre national de la recherche scientifique France
- Institute of Integrative Biology Switzerland
Biodiversity, Plants, Biodegradation, Environmental, Animals, Biomass
Biodiversity, Plants, Biodegradation, Environmental, Animals, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
