Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A single-chamber microbial fuel cell as a biosensor for wastewaters

Authors: Ian M. Head; Keith Scott; Mirella Di Lorenzo; Thomas P. Curtis;

A single-chamber microbial fuel cell as a biosensor for wastewaters

Abstract

The traditional 5-day test of the biochemical oxygen demand (BOD(5) test) has many disadvantages, and principally it is unsuitable for process control and real-time monitoring. As an alternative, a single-chamber microbial fuel cell (SCMFC) with an air cathode was tested as a biosensor and the performance analysed in terms of its measurement range, its response time, its reproducibility and its operational stability. When artificial wastewater was used as fuel, the biosensor output had a linear relationship with the BOD concentration up to 350 mg BOD cm(-3); very high reproducibility; and stability over 7 months of operation. The system was further improved by reducing by 75% the total anolyte volume. In this way a response time close to the hydraulic retention time (HRT) of the biosensor (i.e. 40 min) was reached. When the small volume SCMFC biosensor was fed with real wastewater a good correlation between COD concentration and current output was obtained, demonstrating the applicability of this system to real effluents. The measurements obtained with the biosensor were also in accordance with values obtained with standard measurement methods.

Keywords

Bioelectric Energy Sources, Water, Biosensing Techniques, Equipment Design, Oxygen, Bioreactors, Oxygen Consumption, Water Pollutants, Water Microbiology, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    231
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
231
Top 1%
Top 1%
Top 10%
bronze