Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Research
Article . 2023
License: taverne
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2023
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2023
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparing theoretical and practical biomass yields calls for revisiting thermodynamic growth models for electroactive microorganisms

Authors: Benjamin Korth; João Pereira; Tom Sleutels; Falk Harnisch; Annemiek ter Heijne;

Comparing theoretical and practical biomass yields calls for revisiting thermodynamic growth models for electroactive microorganisms

Abstract

Research on electroactive microorganisms (EAM) often focuses either on their physiology and the underlying mechanisms of extracellular electron transfer or on their application in microbial electrochemical technologies (MET). Thermodynamic understanding of energy conversions related to growth and activity of EAM has received only a little attention. In this study, we aimed to prove the hypothesized restricted energy harvest of EAM by determining biomass yields by monitoring growth of acetate-fed biofilms presumably enriched in Geobacter, using optical coherence tomography, at three anode potentials and four acetate concentrations. Experiments were concurrently simulated using a refined thermodynamic model for EAM. Neither clear correlations were observed between biomass yield and anode potential nor acetate concentration, albeit the statistical significances are limited, mainly due to the observed experimental variances. The experimental biomass yield based on acetate consumption (YX/ac = 37 ± 9 mgCODbiomass gCODac-1) was higher than estimated by modeling, indicating limitations of existing growth models to predict yields of EAM. In contrast, the modeled biomass yield based on catabolic energy harvest was higher than the biomass yield from experimental data (YX/cat = 25.9 ± 6.8 mgCODbiomass kJ-1), supporting restricted energy harvest of EAM and indicating a role of not considered energy sinks. This calls for an adjusted growth model for EAM, including, e.g., the microbial electrochemical Peltier heat to improve the understanding and modeling of their energy metabolism. Furthermore, the reported biomass yields are important parameters to design strategies for influencing the interactions between EAM and other microorganisms and allowing more realistic feasibility assessments of MET.

Country
Netherlands
Keywords

Bioelectric Energy Sources, Extracellular electron transfer, Biomass yield, Acetates, Electron Transport, Microbial electrochemical technologies, Biofilms, Thermodynamics, Electroactive microorganisms, Biomass, Thermodynamic modeling, Geobacter, Electrodes, Restricted energy harvest

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Green
hybrid