
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting

Summary: Water electrolysis powered by renewables provides a green approach to hydrogen production to support the “hydrogen economy.” However, the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are tightly coupled in both time and space in traditional water electrolysis, which brings inherent operational challenges, such as the mixture of H2/O2 and the limited HER rate caused by the sluggish kinetics of OER. Against this background, decoupling H2 and O2 production in water electrolysis by using the auxiliary redox mediator was first proposed in 2013, in which O2 and H2 are produced at different times, rates, and/or locations. The decoupling strategy offers not only a new way to facilitate renewables to H2, but it can also be applied in other chemical or electrochemical processes. This review describes recent efforts to develop high-performance redox mediators, optimized strategies in decoupled water electrolysis, the design of electrolyzer configuration, the challenges faced, and the prospective directions.
- Nanchang Hangkong University China (People's Republic of)
- Fudan University China (People's Republic of)
- Nanchang Hangkong University China (People's Republic of)
- Fudan University China (People's Republic of)
Physics, QC1-999, battery electrode, decoupled water electrolysis, renewable energy, H2 production
Physics, QC1-999, battery electrode, decoupled water electrolysis, renewable energy, H2 production
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
