Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metabolic Engineering
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An energetic profile of Corynebacterium glutamicum underpinned by measured biomass yield on ATP

Authors: Zelle, E.; Pfelzer, N.; Oldiges, M.; Koch-Koerfges, A.; Bott, M.; Nöh, K.; Wiechert, W.;

An energetic profile of Corynebacterium glutamicum underpinned by measured biomass yield on ATP

Abstract

The supply and usage of energetic cofactors in metabolism is a central concern for systems metabolic engineering, particularly in case of energy intensive products. One of the most important parameters for systems wide balancing of energetic cofactors is the ATP requirement for biomass formation YATP/Biomass. Despite its fundamental importance, YATP/Biomass values for non-fermentative organisms are still rough estimates deduced from theoretical considerations. For the first time, we present an approach for the experimental determination of YATP/Biomass using comparative 13C metabolic flux analysis (13C MFA) of a wild type strain and an ATP synthase knockout mutant. We show that the energetic profile of a cell can then be deduced from a genome wide stoichiometric model and experimental maintenance data. Particularly, the contributions of substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP) to ATP generation become available which enables the overall energetic efficiency of a cell to be characterized. As a model organism, the industrial platform organism Corynebacterium glutamicum is used. C. glutamicum uses a respiratory type of energy metabolism, implying that ATP can be synthesized either by SLP or by ETP with the membrane-bound F1FO-ATP synthase using the proton motive force (pmf) as driving force. The presence of two terminal oxidases, which differ in their proton translocation efficiency by a factor of three, further complicates energy balancing for this organism. By integration of experimental data and network models, we show that in the wild type SLP and ETP contribute equally to ATP generation. Thus, the role of ETP in respiring bacteria may have been overrated in the past. Remarkably, in the genome wide setting 65% of the pmf is actually not used for ATP synthesis. However, it turns out that, compared to other organisms C. glutamicum still uses its energy budget rather efficiently.

Country
Germany
Keywords

Corynebacterium glutamicum, Adenosine Triphosphate, Metabolic Engineering, Biomass, Energy Metabolism, info:eu-repo/classification/ddc/610

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
Related to Research communities
Energy Research