Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 1988 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ethanol differentially regulates G proteins in neural cells

Authors: Mark Henteleff; Michael E. Charness; Lisa A. Querimit;

Ethanol differentially regulates G proteins in neural cells

Abstract

Long-term incubation of clonal neural cell lines with ethanol differentially reduces the stimulation of cAMP accumulation by hormones and cholera toxin. In the NG108-15 neuroblastoma chi glioma hybrid cell line, this heterologous desensitization was associated with a 42% reduction in the expression of Gs alpha and no significant change in Gi alpha. By contrast, ethanol treatment of the parental neuroblastoma cell line N18TG2 caused little loss of response to hormones or cholera toxin and no significant change in Gs alpha or Gi alpha. Ethanol induced heterologous desensitization in N1E-115 neuroblastoma cells; however, this cell line showed a dose-dependent increase in Gi alpha and a later decrease in Gs alpha. Thus, ethanol causes heterologous desensitization of hormone-stimulated cAMP accumulation by different mechanisms in related neural cell lines.

Keywords

Immunoassay, Neurons, Cholera Toxin, Dose-Response Relationship, Drug, Ethanol, Cell Line, Clone Cells, Mice, Neuroblastoma, GTP-Binding Proteins, Phenylisopropyladenosine, Animals, Alprostadil

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research