Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amsterdam UMC (VU Am...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2002
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Pharmacology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GABAA–benzodiazepine receptor complex sensitivity in 5-HT1A receptor knockout mice on a 129/Sv background

Authors: Robert A. A. Maes; Lucianne Groenink; Ronald S. Oosting; Tommy Pattij; Berend Olivier; Berend Olivier; Jan van der Gugten;

GABAA–benzodiazepine receptor complex sensitivity in 5-HT1A receptor knockout mice on a 129/Sv background

Abstract

Previous studies in 5-HT(1A) receptor knockout (1AKO) mice on a mixed Swiss Websterx129/Sv (SWx129/Sv) and a pure 129/Sv genetic background suggest a differential gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor complex sensitivity in both strains, independent from the anxious phenotype. To further investigate these discrepancies, various GABA(A)-benzodiazepine receptor ligands were tested in different behavioral paradigms in 1AKO and wild type (WT) mice on a 129/Sv background. 1AKO and WT mice responded comparably to alprazolam, flumazenil, alcohol and pentylenetetrazol as measured in the stress-induced hyperthermia paradigm. In addition, sedative-anesthetic effects of pentobarbital measured via the righting reflex were similar and a selected dose of diazepam exerted similar anxiolytic effects in both genotypes in the elevated plus maze. In conclusion, 1AKO mice on a 129/Sv background have undisturbed GABA(A)-benzodiazepine receptor sensitivity in contrast to those described on a mixed Swiss Websterx129/Sv background. The anxious phenotype of 1AKO mice seems to occur independent of the GABA(A)-benzodiazepine receptor complex functioning.

Country
Netherlands
Related Organizations
Keywords

Flumazenil, Male, Psychopharmacology, genotype, drug response, Farmacotherapie van psychomotorische ziektebeelden; fundamenteel en toegepast onderzoek, tranquilizing activity, Biomedische technologie en medicijnen, ligand, animal behavior, Biochemistry, righting reflex, Pentylenetetrazol, Farmacie/Biofarmaceutische wetenschappen (FARM), GABA Antagonists, alprazolam, stress, Mice, Hypnotics and Sedatives, strain difference, 4 aminobutyric acid A receptor, Mice, Knockout, alcohol, drug receptor binding, Farmacie(FARM), article, anxiety, hyperthermia, Positive righting reflex, (In vivo), priority journal, sedation, Phenobarbital, 5-HT1A receptor knockout mice, GABAA-benzodiazepine receptor, mouse strain, wild type, serotonin 1A receptor, Drugmisbruik en verslaving, Fever, phenotype, animal experiment, pentetrazole, anesthesia, male, Species Specificity, benzodiazepine receptor, Reflex, Genetics, flumazenil, Animals, controlled study, maze test, Maze Learning, pentobarbital, diazepam, Pharmacology, nonhuman, Diazepam, Alprazolam, Ethanol, animal model, receptor sensitivity, Pharmacotherapy of psychomotor diseases; fundamental and applied research, Receptors, GABA-A, Stress-induced hyperthermia, Anti-Anxiety Agents, Receptors, Serotonin, Pentylenetetrazole, knockout mouse, Analytical chemistry, Receptors, Serotonin, 5-HT1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%