Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physicochemical transformations of coal particles during pyrolysis and combustion.

Authors: Rosa Menéndez; Angeles G. Borrego; Diego Alvarez; Wolfgang Kalkreuth; M.J.G Alonso;

Physicochemical transformations of coal particles during pyrolysis and combustion.

Abstract

Abstract The pyrolysis and combustion behaviour of a set of 11 Canadian coals with different ranks (lignite to low volatile bituminous) and maceral compositions has been investigated by TGA techniques. Temperature programmed heating of the coals was carried out both under nitrogen and under air, and the weight loss rates occurring in the two experimental conditions were compared in the whole temperature range studied (100–1000°C). Results showed that the pyrolysis curves of the coals do not match at all with any specific feature of the corresponding combustion profiles, and that the temperatures of initiation of both processes are very different in the low-rank end (higher initiation temperatures for pyrolysis), to become similar only for coal ranks of ∼0.8% vitrinite reflectance and above. This contradicts existing theories which state that coal combustion under TGA conditions is a three-stage process, namely volatiles release, vitrinite combustion and inertinite combustion. The processes leading to the weight loss rates occurring in the early stages of combustion were also investigated, with special emphasis in the temperature interval where no substantial weight losses had occurred yet in either a combustion or a pyrolysis experiment. This was done by heating the coals to 300°C in the TGA under air, and then switching the gas flow to nitrogen and allowing the sample to further devolatilise until 1000°C. Also, partly burnt and/or pyrolysed samples were obtained from the TGA and characterised by optical microscopy techniques. It was observed that the volatile yields of all the coals were substantially reduced as a consequence of their initial heating under air. Besides, evidences of melting and thermal annealing in the inner core of burning coal particles were noticed to occur at lower temperatures than in pyrolysing particles. This was attributed to a sealing effect of the oxidation rim formed in the early stages of combustion, which might give rise to a higher pressure build-up in the inner part of burning particles, thus enhancing the likelihood for condensation reactions to take place in the newly formed metaplast. As combustion profiles are commonly used to infer about combustion behaviour of coals, much care should be exercised in interpreting them, since even in a pure vitrain, two rather than one single material will be involved in the measured weight losses, and, more, these materials will often display fairly different reactivities.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze